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Abstract
We propose a reduced form of Atiah–Patodi–Singer spectral boundary
conditions for an odd (d) dimensional spatial bag evolving in even (d + 1)

dimensional spacetime. The modified boundary conditions are manifestly
chirally invariant and do not depend on time. This allows us to apply the
Hamiltonian approach to confined massless fermions and study chirality effects
in spatially closed volume. The modified boundary conditions are equally
suitable for chiral fermions in Minkowski and Euclidean metric spacetimes.

PACS numbers: 11.30.Rd, 12.39.Ba

Introduction

The two principal problems of QCD are confinement and spontaneous breaking of chiral
invariance. Both phenomena take place in the strongly interacting domain where the theory
becomes non-perturbative. Most probably they are interrelated. However, usually they were
considered separately. Up to now, the spontaneous chiral invariance breaking (SCIB) has been
discussed mostly in infinite space. It would be interesting to study specific features of SCIB
that appear due to localization of quarks in finite volume. In order to do that one needs a chiral
invariant model of confinement.

There exists a rich family of bag models. The first was the famous MIT bag [1] that
successfully reproduced the spectrum and many features of hadrons. A generalization of the
MIT model are so-called chiral bags [2, 3]. An apparent drawback of these models is that the
boundary conditions are explicitly chirally non-invariant.

Attempts to save the situation led to the so-called cloudy bag model [4] where the chiral
symmetry was restored by pion emission from the bag surface (the pion cloud). But this model
is sensitive to details of the adopted scheme of quark–pion interaction. Thus neither of the
listed models is suited to the discussion of SCIB in finite volume.

A way to lock fermions in finite volume without spoiling the chiral symmetry is to
impose the so-called spectral boundary conditions (SBC). They were first introduced by
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Atiah, Patodi and Singer (APS) who investigated the anomalies on manifolds with boundaries
[5]. Later these boundary conditions were widely applied in studies of index theorems on
various manifolds [6].

Unlike the already mentioned ones, the APS conditions are nonlocal. They are defined on
the boundary as a whole. This looks natural for finite Euclidean manifolds but is inconvenient
for physical models where time evolution takes place. The evolution converts the spatial
boundary of a static physical bag into an infinite spacetime cylinder. Constraining fields on
the entire world cylinder including both ‘the past’ and ‘the future’ contradict causality and
complicate generalization to Minkowski space.

In order to avoid this difficulty we propose a purely spatial version of spectral boundary
conditions. These modified conditions do not depend on time and, therefore, are acceptable
from the physical point of view. Besides, they make possible the usual Hamiltonian description
of the system and may be used in Minkowski spacetime.

The paper has the following structure. We shall review the classical APS boundary
conditions in section 1. In section 2 we shall formulate the modified spectral conditions and
discuss their properties. At the end we shall summarize the results and outline future prospects.

1. The APS boundary conditions and their physics

1.1. Conventions

We will start from the traditional form of SBC. First, we will introduce coordinates, Dirac
matrices and the gauge that allow us to most clearly define the spectral boundary conditions.
For simplicity, we will consider the four-dimensional case. The generalization to higher even
dimensions is straightforward.

Let us consider massless fermions interacting with a gauge field Â in a closed Euclidean
domain B4. We choose the curvilinear coordinates so that near the boundary ∂B4 the first
coordinate ξ points along the outward normal while the other three, qi , parametrize ∂B4 itself.
The origin ξ = 0 lies on ∂B4. For simplicity we shall assume that near the surface the metric
gαβ depends only on q so that

ds2 = dξ 2 + gik(q) dqi dqk. (1)

Moreover, we choose the gauge so that on the boundary Âξ = 0.
Now we must fix the Dirac matrix γ ξ . Let I be the 2 × 2 unit matrix. Then

γ ξ =
(

0 iI
−iI 0

)
, γ q =

(
0 σq

σ q 0

)
. (2)

Matrices σq are the ordinary Pauli σ -matrices. With these definitions the Dirac operator of
massless fermions on the surface takes the form,

−i∇/ |∂B4 = −iγ α∇α =
(

0 M̂

M̂† 0

)
=

(
0 I∂ξ − i∇̂

−I∂ξ − i∇̂ 0

)
, (3)

where ∇̂ = σq∇q is the convolution of covariant gradient along the boundary ∇q with
σ -matrices. Note that Hermitian conjugated operators M̂ and M̂† differ only by the sign of
the ∂ξ -derivative.

Furthermore, we shall call the covariant derivative −i∇̂ on the boundary the boundary
operator. It is a linear differential operator acting on 2-spinors. It is Hermitian and includes
tangential gauge field Âq and the spin connection which arises from the curvature of ∂B4.
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The massless Dirac operator anticommutes with the γ 5-matrix:

{−i∇/, γ 5} = 0, γ 5 =
(

I 0
0 −I

)
, (4)

and gauge interactions do not change the helicity of massless quarks. This property is called
chiral invariance. In order to preserve it in finite space one needs chirally invariant boundary
conditions.

1.2. The APS boundary conditions

1.2.1. The definition. Atiah, Patodi and Singer investigated spectra of the Dirac operator on
manifolds with boundaries. If we separate upper and lower (left and right) components of
4-spinors the corresponding eigenvalue equation for −i∇/ will take the form

−i∇/ψ� = −i∇/
(

u�

v�

)
= �

(
u�

v�

)
= �ψ�. (5)

The next step is to Fourier-expand u and v near the boundary. Let 2-spinors eλ(q) be
eigenfunctions of the boundary operator −i∇̂:

−i∇̂eλ(q) = λeλ(q). (6)

Note that the form of this equation and the eigenfunctions eλ(q) depend on gauge. It is here
that the gauge condition Âξ (0, q) = 0 becomes important.

The operator −i∇̂ is Hermitian, so λs are real. The functions eλ form an orthogonal basis
on ∂B4. In principle, −i∇̂ may have zero-modes but sphere and convex manifolds are not the
case.

In the vicinity of the boundary spinors u� and v� may be expanded in series in eλ:

u�(ξ, q) =
∑

λ

f λ
�(ξ)eλ(q), f λ

�(ξ) =
∫

∂B4

e
†
λ(q)u�(ξ, q)

√
g d3q, (7a)

v�(ξ, q) =
∑

λ

gλ
�(ξ)eλ(q), gλ

�(ξ) =
∫

∂B4

e
†
λ(q)v�(ξ, q)

√
g d3q, (7b)

where g = det ‖gik‖ is the determinant of the metric on the boundary.
The spectral boundary conditions state that on the boundary, i.e. at ξ = 0,

f λ
�

∣∣
∂B4

= 0 for λ > 0; (8a)

gλ
�

∣∣
∂B4

= 0 for λ < 0. (8b)

Another way to say this is to introduce integral projectors P+ and P− onto boundary modes
with positive and negative λ:

P+(q, q ′) =
∑
λ>0

eλ(q)e
†
λ(q

′), P−(q, q ′) =
∑
λ<0

eλ(q)e
†
λ(q

′). (9)

Let I be the unity operator on the function space spanned by eλ. Then, obviously,

P+ + P− = I. (10)

If we join two-dimensional projectors P+ and P− into 4 × 4 matrix P , the spectral boundary
condition for 4-spinor ψ will look as follows:

Pψ |∂B4 =
(
P+ 0
0 P−

) (
u

v

)∣∣∣∣
∂B4

= 0. (11)

The projector P commutes with matrix γ 5:

[P, γ 5] = 0. (12)

Therefore boundary condition (11) by construction respects chiral invariance.
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1.2.2. The physics. Now we shall prove that the spectral boundary conditions are acceptable
and explain their physical meaning. Namely, we shall show that SBC provide Hermiticity of
the Dirac operator and conservation of fermions in the bag. After that we will explain the
origin of requirements (8).

First let us prove that Dirac operator is Hermitian. As usually, we integrate by parts the
expression ∫

B4

dVf †(−i∇/g) =
∫

B4

dV (−i∇/f )†g +
∮

∂B4

dS f †(−iγ ξ )g. (13)

Now we need to show that if f and g satisfy (8) then the last term vanishes.

Conditions (8) mean that on the boundary 4-spinors f and g may be written as f = (
f −
f +

)
and g = (

g−
g+

)
, wheref ± and g± include only components with positive and negative λ

respectively; see (7). Rewriting the boundary term in (13) we get∮
∂B4

dS f †(−iγ ξ )g =
∮

∂B4

dS[(f −)†g+ − (f +)†g−] = 0, (14)

due to the orthogonality of eigenfunctions of the boundary operator. Thus the APS boundary
conditions indeed ensure the Hermiticity of the Dirac operator.

In addition, relation (14) guarantees conservation of fermions in the bag. Indeed, for
f = g, the lhs is nothing but the net fermionic current through the boundary,∮

∂B4

dS jξ = −i
∮

∂B4

dS f †γ ξf = 0. (15)

Therefore the number of fermions is conserved and particles in the spectral bag are confined.
In order to understand the physics of SBC let us rewrite the eigenvalue condition (5) near

the boundary in terms of components:

(∂ξ + λ)gλ
�(ξ) = �f λ

�(ξ), (16a)

−(∂ξ − λ)f λ
�(ξ) = �gλ

�(ξ). (16b)

Depending on the sign of λ these relations reduce on the boundary either to

∂ξg
λ
�

gλ
�

∣∣∣∣
ξ=0

= −λ < 0, f λ
�(0) = 0 at λ > 0; (17a)

or to

∂ξf
λ
�

f λ
�

∣∣∣∣
ξ=0

= λ < 0, gλ
�(0) = 0 at λ < 0. (17b)

Thus both components either vanish on the boundary or have a negative logarithmic
derivative along the normal.

This requirement has a simple physical interpretation. Suppose that out of the bag the
metric and the gauge field remain the same as on the boundary. Then we can continue the
functions f and g outside the bag to ξ = ∞. Some of the functions will be zero, f + = g− = 0
at ξ > 0, and the rest will be falling square integrable exponents f λ, gλ ∝ exp −|λ|ξ similar
to wave functions of the particles locked in a potential well. The only difference is that now
the depth of the well depends on λ and is adjusted for each mode specially. We may conclude
that the spectral boundary conditions claim that wavefunctions in the bag must have square
integrable continuation to infinity.



Modified spectral boundary conditions in the bag model 6113

2. The SBC for physical bags

2.1. The truncated SBC

Now let us turn to fermions confined in a three-dimensional spatial bag B3 that evolves in
Euclidean time and sweeps the infinite spacetime cylinder B3 ⊗ R. We will call the first three
coordinates ‘space’ and the fourth one ‘time’. The boundary operator consists of spatial and
temporal parts:

−i∇̂∂B3⊗R = −i∇̂∂B3 − iσ z∂4. (18)

We will call the spatial part −i∇̂∂B3 the truncated boundary operator. Let its eigenfunctions
be e±

λ :

−i∇̂∂B3e
±
λ (q) = ±λe±

λ (q), λ > 0. (19)

Wavefunctions on the spacetime boundary ∂B3⊗R can be expanded in e±
λ and longitudinal

(temporal) plane waves:

u� =
∑
λ>0

∫
dk

2π
eikt

[
f

+λ,k
� e+

λ + f
−λ,k
� e−

λ

]
, (20a)

v� =
∑
λ>0

∫
dk

2π
eikt

[
g

+λ,k
� e+

λ + g
−λ,k
� e−

λ

]
. (20b)

The truncated operator −i∇̂∂B3 anticommutes with σ z. Therefore σ z changes the sign of
e-eigenvalues. A possible choice of eigenvectors is (see [7, 8] for the sphere)

e±
λ = ±iσ ze∓

λ . (21)

Thus the last term in (18) mixes positive and negative spatial harmonics.
In classical approach this would mean that SBC should be written in terms of k-dependent

eigenfunctions of the full boundary operator (18) which look rather complicated. Moreover,
extending boundary conditions onto the entire interval −∞ < t < ∞ makes them ‘future-
sensitive’ and violates causality. Therefore we propose to consider the k-independent truncated
APS constraints:

f
+λ,k
�

∣∣∣
∂B3

= 0, (22a)

g
−λ,k
�

∣∣∣
∂B3

= 0. (22b)

These conditions do not depend on time and allow Hamiltonian treatment of the system.
Besides, they may be applied both in Euclidean and Minkowski spaces. Now let us show that
they are acceptable.

2.2. Consistency

We are going to prove that the truncated form of SBC fulfils the necessary conditions. Namely,
they are chirally invariant, the Dirac operator is Hermitian, the fermion number is conserved
and, after all, wavefunctions may be continued out of the bag to spatial infinity.

The proof of the first three points literally follows the four-dimensional case. Everything
that concerns formulae (9)–(15) remains true for truncated (T ) three-dimensional SBC (22).
One may define on ∂B3 projectors,

P±
T (q, q ′) =

∑
λ>0

e±
λ (q)

[
e±
λ (q ′)

]†
. (23)



6114 A A Abrikosov Jr

Then the truncated boundary conditions may be written in the manifestly γ 5-invariant form,

PT ψ |∂B3 =
(
P+

T 0
0 P−

T

) (
u

v

)∣∣∣∣
∂B3

= 0. (24)

Hermiticity of the Dirac operator and conservation of fermions are proven in the same
way as before, see (13)–(15), so we skip the formulae.

The last point is more delicate. We already mentioned that the σ z-piece in (18) mixes
positive and negative harmonics. Therefore they must be analysed together and instead of two
eigenvalue equations (16) we get four (ξ is the spatial normal to the boundary):

(∂ξ + λ)g
+λ,k
� = �f

+λ,k
� + ikg−λ,k

� ; (25a)

−(∂ξ − λ)f
+λ,k
� = �g

+λ,k
� + ikf −λ,k

� ; (25b)

(∂ξ − λ)g
−λ,k
� = �f

−λ,k
� − ikg+λ,k

� ; (25c)

−(∂ξ + λ)f
−λ,k
� = �g

−λ,k
� − ikf +λ,k

� . (25d)

The new feature with respect to (16) is ik-terms that appear due to the mixing. However one
may notice that the terms in the rhs of (25) come in pairs f +, g− and f −, g+. Therefore
according to conditions (22) the rhs of equations (25a), (25d) still vanish on the boundary.
Thus the behaviour of g+ and f − on the boundary is governed by the homogeneous equations
and

∂ξf
−λ,k
�

f
−λ,k
�

∣∣∣∣∣
ξ=0

= ∂ξg
+λ,k
�

g
+λ,k
�

∣∣∣∣∣
ξ=0

= −λ < 0. (26)

Hence despite the presence of extra pieces the non-vanishing components g+ and f − have
negative logarithmic derivatives. This means that solutions of eigenvalue equations may be
continued from the world cylinder swept by the evolving bag to spatial infinity in an integrable
way. Thus the last of the requirements is fulfilled. This completes the proof of acceptability
of the truncated SBC.

Conclusion

The truncated version of APS boundary conditions offers a number of possibilities. It allows
us to formulate a chirally invariant bag model and to address chiral properties of a fermionic
field in the closed volume. The constraints do not depend on time so one may write down the
Hamiltonian and study the energy (and mass) spectrum of the system. Another advantage is
that the modified SBC may be used both in Euclidean and Minkowski spaces.

A new feature that SBC may bring to bag physics is their nonlocality. The usually
employed local boundary conditions, see [1–3], correspond to the thin wall approximation.
The spectral conditions refer to the boundary as a whole. Therefore, in a sense, hadrons are
also treated as a whole which complies with modern concepts. It would be interesting to
investigate the hadronic spectra in chiral invariant bags and find out if the model is realistic
and what it is missing.

Another question is more mathematical. Chiral symmetry is specific for fermions in
even-dimensional spaces. Hence the spectral boundary conditions were always discussed
in even dimensions. The truncated SBC are formulated in the odd-dimensional space that
remains after discarding the time. This might have interesting consequences. For example,
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the boundary of an odd-dimensional bag is an even-dimensional manifold and the truncated
boundary operator possesses a sort of internal chirality. It would be interesting to study the
consequences of this hidden symmetry.
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